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SUMMARY

The problem of predicting aerodynamic loads on the insulating
tiles of the Space Shuttle Thermal Protection System (TPS) is dis-
cussed and seen to require a method for predicting pressure and
mass flux in the gaps between tiles. A mathematical model of
the tile-gap flow is developed based upon a slow viscous (Stokes)

flow analysis and is verified against available experimental data.

This model derives the tile-gap pressure field from a solution of
the two-dimensional Laplace equation; the mass flux vector is then
calculated from the pressure gradient. The means for incorporat-
ing this model into a lumped-parameter network analogy for porous-
media flow is also given. The flow model shows tile-gap mass

flux to be very sensitive to the gap width indicating a need for
coupling the TPS flow and tile displacement calculations. Finally,
recommendations are made concerning additional analytical and
experimental work to improve TPS flow predictions and regarding

a possible Shuttle TPS hardware modification.
INTRODUCTION

During the ascent of the Space Shuttle, the vehicle passes
through subsonic, transonic, and supersonic speed regimes. Since
the craft accelerates very quickly from the launch pad. the tran-
sonic regime is encountered at approximately 6,100 m (20,000 ft)
where the atmosphere is still quite dense. This leads to a high

dynamic pressure which, when coupled with the shocks present in



the transonic flow, produces large aerodynamic loads on the shuttle
TPS tiles. Many of the tiles subjected to large localized loads
were identified, removed, and replaced with stronger, '"densified"
tiles prior to STS-1 launch (ref. 1). However, the following
questions remained: (1) Could densified tiles withstand the
anticipated severe aerodynamic loads? and (2) Were all of the
critically loaded tiles idenmiified?

In response to question (1), wind-tunnel experiments were
conducted on several different TPS test panels in order to measure
forces and moments as well as pressures in, under, and around
tiles. Generally, these panels were composed of "densified" tiles
such as those subject to the severest shock-load conditionms.

In response to question (2), continued tile loads assessment
by the NASA Langley Structures Team (NLST), particularly for
shocks impinging upon the TPS. indicated a questionable margin of
safety for a number of as yet "undensified" tiles. A validation
of the tile loads model as used by the NLST was performed utilizing
the experimental data from the TPS panel tests, which indicated the
need for a more accurate model.

As a result of these concerns, a more rigorous, independent
tile shock-loads analysis was initiated by the NLST. Here, the
flow through the porous tile, strain isolation pad (SIP), and
filler bar, as well as in the gaps around the tile, was to be
calculated in order to obtain the tile loads. Flow through the

porous media (tile, SIP, and filler bar) was readily modeled in



the MITAS-II heat-transfer code (ref. 2). It was not immediately
understood, however, how to model the flow through the tile gaps.

As a part of the NLST effort, the authors undertook the devel-
opment of a model for the tile-gap flow. The results of the effort
are presented in this paper. As will be shown, the model predicts
that the flow in the tile gaps is strongly dependent upon the
magnitude of the tile gap width; thus, calculations of aerodynamic
loads on an individual tile cannot be uncoupled from its relative
mo‘'ion in the TPS. Results and recommendations of this effort
were available before the STS-1 launch.

Development of the present tile-gap flow model in a timely
manner was enhanced by helpful discussions with and numerical
solutions b J. D. Keller and J. C. South, Jr. (Theoretical Aero-
dynamics Branch, Transonic Aerodynamics Division) and J. L. Thomas

(Subsonic Aerodynamics Branch, Low-Speed Aerodynamics Division).

SYMBOLS
Z vector streamfunction
D tile-gap depth (cm)
d distance measured along tile diagonal (cm)
f velocity profile function
H (0*/b)° where h* + b = 2h,,
h tile-gap width (cm)
L tile side length (cm)
M Mach number



=+

mass flux vector

m mass flow rate in x-direction per unit length

n mass flow rate in y-direction per unit length

p pressure (kPa)

R Reynolds number

Rr reduced Reynolds number

sij finite difference residual of Laplace equation for
pressure

t time (sec)

u,v gap centerline velocity components in x- and
y~directions, respectively (cm/sec)

u,v,w velocity components in x-, y-, and~z-d1rections,
respectively (cm/sec)

u, inviscid freestream velocity (cm/sec)

; velocity vector (cm/sec)

X,¥,2 Cartesian coordinates defined in figure 2 (cr)

Ax, Ay ?es? increments in x- and y-directions, respectively
cm

s* boundary-layer displacement thickness (cm)

U coefficient of viscosity (gm/(cm-sec))

P density (gm/cm3)

g conductance (cm-sec)

¢ velocty potential function (cm2/sec)

w vorticity vector (sec‘l)

V2 Laplacian operator (cm‘z)

Vg two-dimensional Laplacian operator (cm'z)

Iq] Jump in q across discontinuity



Subscripts

I nﬁmber of mesh points in x-direction

i,J mesh increment counters in x- and y-directions,
respectively

r reference conditions

t differentiation with respect to time

X,y¥,2 differentiation with respect to indicated variable

o outer inviscid freestream conditions

Superscripts
* dimensional quantity

! differentiation with respect to argument
+ conditions downstream of discontinuity

- conditions upstream of discontinuity
TILE-GAP FLOW MODEL

Schematic diagrams of the TPS component arrangement are shown
in figure 1. The main components of the system are the porous
ceramic tiles and the nomex felt strain isolation pad. The tiles
have an impervious coating on all exposed surfaces with the ex-
ception of a small strip around the base called the terminator
gap. The glue bonds between the tile and SIP are also considered
impervious. The filler bars form a matrix on the aluminum skin of
the shuttle into which individual tile/SIP assemblies are glued.
Adjacent tiles are separated by a narrow gap of up to 0.13 cm
(0.05 in). The filler bar is glued to the skin but neither to

the tile nor SIF; thus, tile motion in response to aerodynamic



loads can lead to the opening of a small gap between the tile and
filler bar (termed the filler bar gap).

The shuttle flow field at transonic flight conditions con-
tains shock waves which may be located on particular tiles so that
the pressure on the downstream portion of the tile is higher than
the pressure on the upstream portion. Both the tile and SIP are
porous, thus allowing a flow path for the high-pressure gas to
develop in response to the tile-surface-pressure gradient. In
such a situation, high-pressure air can move down the tile gap
and into both the tile through the terminator gap at the bottom of
the tile and the SIP through the filler-bar gap. Gas flow in both
the tile and SIP can be treated as porous-medium flow. In order
to develop a full-tile flow-field model, however, one must be able
to analyze the flow through the tile-to-tile gap and the tile-to-
filler bar gap.

Rationale for Model

Guidance in the development of a tile-gap flow model may be
obtained from a Reynolds number estimate. At transonic ascent
conditions there is a turbulent boundary layer on the tile outer
surface so that, at the top of the narrow tile-to-tile gap,
velocity components are very small. If one takes the normal
velocity (V;) induced by the turbulent boundary-layer growth
along the s* ‘ttle surface as a measure of the gap velocity, then

this velocity is approximately



%
* * ¥ -
Vr = Us (%i;) = 0.0370,, R_1/S (1)

(-]
For the STS-1 shuvtle ascent trajectory, an appropriate transonic
flight condition near maximum dynamic pressure is MN_ = 0.9 at
about 6,100-m (20,000-ft) altitude. The Reynolds number based on
1/2 mean chord is about 80 million. Using equation (1) then gives

v; = 27.7 cm/sec (0.91 ft/sec); 1.e., very slow flow. Since Hoth

*

h 1
the tile gap to tile length ;; =~ {20 and tile gap to tile
n*t 1
depth =3 ~gg Aare very small for most tiles, one would expect
D .

the "slow creeping flow" approximation to be valid. According to
reference 3, the appropriate Reynolds number for very slow flows
(such as Stokes flow, lubrication theory flow, Hele-Shgw flow) is

a reduced Reynolds number given by an expression of the form

p# V* L* * 2

r r h

r L
'3

Substituting the previously given parameters in equation (2)
yields a reduced Reynolds number for the gap flow of Rr = 0.12.
Since many of the very slow flow models are reasonably valid up
to Rr = 4 or 5, a model of this type is utilized for the tile-
gap flow.

Governing Equations
The basic approximation in creeping flow is that the fluid is

ipcompressible and that the viscous forces dominate the convective
7



forces. Therefore, if the convective forces are neglected, tks

incompressible Navier-Stokes equations reduce to

2

V'p=0 (3)

v, + 9p = "l % (4)

where all quantities have been normalized according to the follow-

ing scheme

hd * t Vv *
-+ -+ -+
vVl Van'V,t=—F p=-R_ (5)
Ve *V*z
prr
with
prVen' .
R= 3 'Rr-—-*—
Hp h

Tre coordinate system is defined in figure 2.

Recalling that the tile gaps are guite deep yet very narrow,
and assuming that their faces remain ' arallel, we then take the
velocity component across the gap to be small compared to the
other two components (i.e., assume w = 0). Therefore, the !
z-component of the momentum equation (eq. 4) reduces to

3P .
13 0

which upon integration yields

P = pi{x,y) (6)



The final assumption in the flow model is that the solutions for

u and v afe separable. That is,

u(x,y,z) = £(2) ﬁ(x.y)

(7)
v(x,y,z) = £(z) V(x,y)

It is easily verified that the function £(z) must be the same
for both u and v if the velocity vector is to remain diver-
gence free. Substitution of equations (6) and (7) into eqna-;

tions (3) and (4) gives (for steady flow)

v3p = O (8)

P, = R'lfng + R 1"y (9)
and

p, = KLYV + BT (10)

The no-slip boundary condition at the gap walls requires that
f vanish there. Normalization of f at the center of the gap

then yields

f(o) =0 '
£(1) =0 . (11)
£(0.5) = 1

Since U and V are independent of 2z and equations (9) and
(10) are valid for any value of 2z, we evaluate these equations at

z =0 and obtain



Rpx
f"(O)

Rp
V-_.L

f"(O)

Direct calculation of VgU and ng gives (in view of eq. (8))

2 R 3 2
Vol = ———e — V. p =0

2 f"(O) 9x 2

(12)

2 R ] 2
VoV = —— Vop =0

2 f"(O) .5? 2

It thus follows from equations (6), (9), (10), and (12) that
f"(z) = constant (12

The profile function £(z) satisfying equations (11) and (13) is
then
£(z) = -4z(z-1) (14)

Expressions for U and V which follow from equations (€), (10),

(12), and (14) are

U= -Rpx/s

(15)
V= -pr/8

10



In appendix A, a derivation of these results is given in terms
of velocity‘vector potential functions.

It may be observed from equation (8) that the solution for
the pressure field in the gap is decoupled from tLe solution of
the velccity field if the pressure boundary conditions are inde-
pendent of the gap velocities. For such cases, the pressure field
is obtained as a solution of equation (8) and the velocityv field
is then obtained from equations (7), (14), and (15).

Pressure Boundary Conditions

In order to solve equation {8) for the pressure field in
tue tile gaps, boundary conditions are required. We assume that
the pressure distribution at the top of the gap is known, since
the pressure over the entire tile outer surface is established
by the large-scale flow field of the shuttle itself and "drives"
the TPS flow. At the hottom of the gap, two types of boundarf
conditions were considered. First, in order to validate the flow
model, initial comparisons with experimental data used pressures
spe fied along the gap bottom; that is, Dirichlet boundary
conditions. Second, in calculations which might be interacted
with a porous-medium code for the internal tile and SIP {lows,
the vertical mass-flow rate per unit length would be specified.
It will be seen that this specification required that py be
given along the gap bottom; that is, Netmann boundary conditionms.

Similarly, along the vertical boundaries of a tile face a mass-

flux condition can be used to form an interface boundary condition

11



from the solution for the adjoining tile faces. This procedure

will be described in more detail subsequently.

Mass Flow Rates
The mass-flow rate per unit length of gap in either the x-
or y-direction can be readily calculated from the previous equa-
tions. For example, the mass-flow rate in the x-direction is

given by

which becomes, upon using equations (7), (14), and (15)

m = -Rpx/12 (16)
A similar integration yields for the y-direction flux

n = -Rp /12 (17)
Dimensional forms of equations (16) and (17) are

* #3

(18)
» a3 .
e
12u; 2y

2t =

Equations (18) indicate that the dimensional mass-flow ra‘e

through the narrow gap is proportional to the product of the cube

12



of the gap width and the pressure gradient. Thus, the mass flux
through the tile gap will be quite sensitive to changes in the
gap width. Thus, in making aerodynamic loads assessments for the
TPS, one must couple the TPS flow calculations with the tile

motion due to aerodynamic and other forces in those regions where

relative tile motions can occur.
TILE-GAP FLOW/TILE DISPLACEMENT COUPLING

The large relative tile motions observed duxring the Combined
Loads Orbiter Test (CLOT) series conducted in the NASA Langley
8-Foot Transonic Pressure Tunnel appear to have occurred in the
vicinity of shock waves. The observed tile chipping indicates
that in some places the tile gaps were essentially closed at
times. Thus, one suspects that, in the region of shocks, some
of the tile gaps effectively close causing high pressures under

adjacent tiles.

Flow Metering by Variable Gap Width

The coefficient of the pressure gradient in an equation like
equation (18) is, in effect, the '"porosity" (conductance or
reciprocal resistance) of the medium which, in this case, is the
gap itself. The size of this '"porosity" is essentially determined
by the gap width, h. When several porous elements are connected
together (such as the tile gaps, SIP, filler bars, and porous
tile, as shown in fig. 1), the resulting mass flow is governed by

effective porosities as seen locally within the network. In &
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series circuit, the smallest porosity meters the flow and sustains
the largest pressure gradient, whereas, in a parallel circuit, the
bulk of the flow passes through the most porous branch with essen-
tially no flow through the less porous branches. The TPS flow-
field can be modeled as a complex network containing many series
and parallel connections. As a tile gap narrows, it will effec-
tively meter the flow when its porosity becomes smaller than that
of the other elements. That is, there will be little flow through
it, or, conversely, it will support a large pressure gradient.

The relative magnitude of porosity for all of the elements
involved in the network needs to be known or amenable to calcula-
tion for a valid prediction of the flow. As already indicated,
the porosity of the tile gap depends upon the gap width which
changes with relative tile motion. Some measurements of the
nominal tile and SIP material porosities have been made (ref. 4).
The tile itself is rigid enough so that its porosity is probably
unaffected by tile block dynamics. However, the porosity of the
spongy, felt-like SIP material should change with the tile block
motions and other loads which are superimposed upon it. Using the
data of reference 4, an estimate is made of the SIP porosity for
cdimensions appropriate to this study in appendix B and this value
was used to normalize the coefficient o* for the variable tile
gap which is presented in figure 3. The value for the SIP poros-
ity used in the normalization should be considered a lower bound,
since flow throcugh the sample in the experiment of reference 4

was conducted with atmospheric pressure superimposed on the

14



large SIP faces. Under flight conditions where one is concerned
with tiles at and just ahead of a shock wave, the tile block will
be tending to lift and the SIP will be under tension (stretched
or fluffed up) and will become ﬁore porous. The point is, at
some reasonable, narrow, tile-gap width, the "porosity" of the
gap becomes smaller than that of the SIP. When no constrainiag
devices have been inserted between the tiles, the minimum tile-
gap width will be determined by the surface rougkness, waviness,
or curvature of the individual adjacent tile faces.

If one is depending upon the nominal gap widths on all sides
of a tile block to relieve pressure gradients between the tile
upper surface and the SIP, then a lateral shift of the tile will
result in differential relieving effects. Furthermore, flow under
a given shifted tile may find the path of least resistance to be
under an adjacent tile rather than to the upper surface through a
very narrow tile gap. Around shock waves, such l: :ral tile dis-

placements are expected.

Lateral Tile Displacemeat Due to Shock Load
Since the tiles are not directly mounted on a rigid surface,
but rather to the nonrigid SIP, lateral tile displacements duexto
shock pressure loads alone can be large enough to close the tile
gap. This can be seen by considering typical shuttle flow condi-
tions and wmeasured SIP properties.
An estimate of the side or shearing load on a tile is made by

assuming a normal shock impinging across the middle of a tile

15



oriented as in figure 1. At M_ = 0.9, it is not unreasonable to
assume a local Mach number of 1.2 abead of the shock. At an
altitude of 6,100 m (20,000 ft), a 15.24-cm x 15.24-cm x 6.35-cm
(6-in x 6-in x 2.5-in) tile develops an upstream force of 133 N
(30 1bt) if it is assumed that the pressure in all of the gaps is
constant in the y-direction. This yields a shear stress in the
SIP of 8.41 kPa (1.22 psi) if one assumes a 161-cm® (25-in%) SIP.
In figure 4, experimentally determined stress-strain proper-
ties of the SIP loaded in shear (ref. 5) are presented. From the
figure, it is seen that a shear stress on the ordar of €.89 kPa
(1 psi) should move the tile 0.23 cm (0.09 in), an amount more
than sufficient to close the tile gap (nominally 0.13 cm (0.05 in))
on the low pressure (upstream) side of the tile (assuming adjacent
tiles remain fixed). The model for the TPS flow field must, there-
fore, be coupled with the structural dynamics of the TPS in order

to accu.ately predict tile aerodynamic loads.
APPLICATION TO TPS GEOMETRY

In order to assess the validity of the proposed gap-flow
model, or first considers flow about a single tile. The situa-
tior ‘. somewhat different than shown in figure 1, in that the
sidgle tile is surrounded by a solid wall. The tile is, however,
allowed to move laterally so that the tile-gap width may not be
ur.iform arovund the tile. Two equivalent solution algorithms are
discutsed in the following sections. One can solve a number of

(vupled Laplace equations, such as equation (8), for flow in the

le



tile gaps as well as in the truly porous material (i.e., the tile,
SIP, and filler bars); or one can solve a lumped-parameter network
representation of diffusion equations, such as equations (18), in
the tile gaps, again with analogous equations for the truly porous
media. Both approaches are discussed here, since the former %ns
used to quickly determine that the present tile-gap flow modei was
reasonable while the latter is being used by the NLST in full TPS

assessments.

Laplace Equation Solver

It is expected that the creeping flow model will not be
strictly applicable in a small vicinity about the tile edges.
However, for the purposes of simplicity, all of the edge regions
are treated here using the same model. Keeping this assumption
in mind, the gap around the tile (fig. 5) can be "unwrapped" into
a flat solution space. Equation (8) is to be solved for the
pressure field in the flat space. Since the gap facing each of
the four sides of the tile can have a different width, a special
interface condition must be applied along the vertical edges in
figure 5. This interiace condition is obtained by requiring mﬁss
conservation across each interface line.

From equation (18) it can be seen that, if ﬁ‘ is to be
continuous across an interface boundary, then ap‘/ax‘ cannot be
continuous if the gap width, h*, is discontinuous there. However,
the pressure, p‘, must be continuous across the interface boundary.

Equation (18), evaluated on either side of the interface, is then

17
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o [T e
@) - . (32;)
12ur ox
and
3
* *]
- h +
@*) - - [( ) (ap')
12u ax
- +

Thus, if (m') = (@') one obtains

N «\" )
(=) - = (25)
9x ox
\ (19)
3
+
where H = (9:)
h )
Also, as stated before
- +
®) =) (20)

The isolated tile-gap solution procedure is to solve equa-
tion (8) with p. specified along the top of the gap and either
p"l or ap"'/ay’.I specified along the bottom of the gap. In the
gost general case, four interface conditions of the type given by
equations (19) and (20) must also be satisfied. For the cases
18



calculated in the present report, symmetry was assumed along the
tile diagonal alined with the outer inviscid flow; thus, only one
value of H appears when the tile is displaced along this diag-
onal. In order to compute the distribution of p* in the gaps,
a second-order accurate finite-difference analog of equation (8)
was solved using a successive line over-relaxation (SLOR) pro-
cedure (ref. 6). The details of this well-known procedure will
rot be given here; some comments on how the interface condition
was implemented are appropriate and are givern in appendix C.

For a single-tile experiment, where only tha® one tile can
move, the gap widths are constrained. That is, the average of

gap widths on opposite tile faces are related by

- +

(%) + %) =e2n (21)

Upon using the definition of H (eq. (19)) one obtains frcu
equation (21)

and (22)

19



Diffusion Equation Solver

The MITAS-II (ref. 2) computer program is designed to solve
problems governed by diffusiorn-type equations using a lumped-
parameter network representation. The resulting éystem of equa-
tions is solved using a point relaxation scheme, which by current
standards is not computationally efficient but is quite reliable.
This program is well suited to solving the flow in truly porous
media, such as the flow inside the tile and SIP materials. 1In
order to solve fluid-flow problems using this technique, a
resistance law must be provided in the form

+% *
M *x *
M =0 Vp (23)

* * * * *
where ¢ = 0 (x ,y ,2 ) 1s a conductance or porosity. For the
model of the tile-gap flow field lerived in the present work, one

may readily identify o* from equation (18) as

* #3

0 = e (24)

and, thus, easily include the tile-gap flow model into the network
analysis.
Incorporation of the tile-gap flow model of equations (23)
and (24) into the diffusion network, allows one to solve the
entire TPS flow field simultaneously by utilizing only the MITAS-II

* *
program. Since one expects the gap width h (and, thus, ¢ ) to

20



vary due to pressure loads and SIP mechanical response, as dis-
cussed above, one must include such structural response charac-
teristics in an entire TPS analysis. Furthermore, this structural
response must be iteratively interacted with the diffusion net-
work solver sipce the changing gap width h* will strongly aifect
the mass-flow rates. This interaction will be required not oaly
for & time-dependent (dynamical) analysis; but, also, for the-
mean-steady flow to reach an equilibrium state which is what is

envisioned here.
COMPARISON WITH EXPERIMENTAL DATA

Results calculated using the present model for tile-gap flow
are here compared with unpublished experimental data from two
tests. The first compares Laplace solver results with those from
the 0S-52 test conducted at the NASA Ames Research Center (ARC).
In this comparison, the tile-gap flow solution obtained using
experimental boundary data and no interaction with the porous
tile or SIP is compared with measured results in order to test
the validity of the creeping flow assumption. The second compares
single-tile-network results with those from the simulated shock
test conducted at the NASA Johnson Space Center (JSC). The theo-
retical prediction was made using the MITAS-II computer program
with all of the TPS components modeled. This calculation was made
by Dr. George Ivey and Mr. Dennis Petley of the Systems Engineering
Division of NASA Langleyv Research Center (LaRC).

21



Comparison With NASA 0S-52 Test

In the 0S5-52 test, a panel of tiles was subjected to an
aerodynamic loading in a transonic wind tunnel! which simulated
flight ascent conditions. A schematic diagram of the test arrange-
ment is shown in figure 6. In this experiment, the test tile with
its associated gaps and SIP was instrumented for pressure measure-
ments, detalled enough for attempting a gap-flow model assessment.
Pressures were measured along vertical columns down the gaps at
the eight locations indicated in figure 7. Figure 7 also shows
a cross-section of the instrumented test and adjacent dummy tiles
indicating the location of the gap pressure taps and the particu-
lar TPS arrangement for this test. Note that only the test tile
is mounted on the SIP and that the aluminum wall is breached
around the entire SIP base to allow a direct tile load measure-
ment. The entire TPS flow field is open to a plenum beneath the
aluminum wall. This arrangement comprcmises the fidelity of the
experiment, in that flow through the porous tile and SIP are
short-circuited. However, for the purposes of this study, the
detailed gap pressure measurements allow a direct assessment of
the adequacy of a creeping flow assumption for the gap-flow model.

In the present comparison, equation (8) was solved for the
pressure distribution in the gap around the entire test tile with
the tile in its nominal centered position. The pressure specified
as the boundary data along both the top and bottom of the gap was
taken from the measured experimental data. The flow field was

‘assumed to be symmetric about the tile diagonal alined with the
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flow direction, since measured data were taken on only two tile
sides as indicated in figure 7. Comparisons of the predicted

-and measured pressure distributions for six runs from the 0S-52
test series are shown in figure 8. These six rums represent cases
where an undensified tile was subjected to a shock load, with
relevant experimental conditions summarized in table I. Compari-
son in all six cases is seen to be excellent. This result is’
interpreted to mean that the pressure in the narrow tile gap is
interpolated by Laplace's equation. From the Navier-Stokes equa-
tions one sees that, if inertial forces are comparable to the
pressure and viscous forces, then the Laplaciar of pressure would
not vanish and one would expect discrepancies to appear in compari-
sons such as those presented in figure 8. This result is taker as
evidence in support of the validity of the creeping flow assumption
for the gap flow model.

The effect of tile displacement on details of the calc-ilated
pressure distribution in the gaps for 0S-52 test run 31:4 is shown
in figure 9. The same experimental pressures were used as
Dirichlet boundary data at both the top and bottom of the tile
gap. It is seen “hat the pressure distribution is altered only
in the immediate vicinity of the corner. 1In the pressure compari-
sons of figure 8, the effect of changing H (that is, shifting
the tile) cannot be detected to the accuracy of the plots.

As would be expected from equations (18), the effect of tile
displacement on the mass flux in the gaps is large. Calculated

mass-flux vector plots for 08-52 test run 31:4 are shown in
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figure 10 for various tile displacements from the nominal position.
After the front gaps have closed about halfway (i.e., H = 27), the
mass flux through them has virtually disappeared. Further tile
displacemen. appears to have little effect on the mass flux. The
expected strong metering ability of varying tile-gap width is thus
demonstrated numerically. Since neither gap-flow velocities Lor
mass flux measurements were made in the 0S-52 tes’ comparison

with experiment is not possible for these quantit

Comparison With NASA JSC Simulated Shock Test

The JSC simulated shock test was a static-tile, shock-load
simulation. 1In this test, a single tile was mounted on the SIP
and was placed in a pressure vessel divided by a bulkhead as shown
schematically in figure 11. Different pressures were maintained
in the two chambers of the vessel and the only communication path
between them was the TPS flow field. Pressures were meesured in
the SIP and at the tile bond line (TBL) at the pressure taps shown
in figure 11.

The MITAS-11I computer program was used to calculate the TPS
flow field for this test arrangement; that is, a single-tile net-
work. Equations (18  were used to model the tile-gap flow, with
the porosity given by equation (24), while the porosities for the
SIP and tile were takzn from the data of reference 4.

In the JSC tost, the tile was held fixed with r. spect to the
bulkhead with nominal gap widths of 0.11 cm (0.045 in). Two com-

parisons of measured and predicted pressure distri..tions along
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the tile diagonal denoted d;BL at the TBL are shown in figure 12;
the pressure Jjump, Ip]- 17.9 kPa (2.6 psia), simulate a shock
wave occurring on the tile outer surface. The sim: . .2d shcck is
located at about 33 percent of the distance along %ne tile dia, vaal
in figure 12(a) and at about 61 percent in figure 12(b). For hoth
cases, the predicted and measured pressure at the TBL agree to
about 0.69 kPa (0.1 psia,, which is considered to be very good.
Similar agreement was obtained for the SIP pressures.

Onc concludes from both the experimental and computed results
thai the flow is being metered by the SIP and/or tile. Thus, the
porocity of the SIP and/ox tile is less than tbhe effective poros-
ity of the tile gaps of nominal width. Calculations were also
made for the tile slightly displaced, gimulating the change in
gap widths due to shock loads. These numerically demonstrate not
only the mass-flow changes as previously shown in figure 10, but
also the changes in pressure level and gradient locations when the
narrow tile gaps (on the low-pressure side of the shock) meter the
TPS flow. Unfortunately, the JSC test was not successful in
obtaining pressure data for the test tile slightly shifted so
that comparisons could be made. Such tests are still deemed to

be important in validating the present flow model.
CONCLUDING REMARKS

The present study 1llows one to draw sevarul conclusions
about the 1PS flow field. Calculations made in conjuncticn with
the 0S-52 test data indicate that the flow in the tile gaps is



governed by the creeping or slow viscous flow equations. The
remaining elements of the TPS; i.e., the tile, SIP, and filler
bar are truly porous media wherein fluid flow is governed by the
same equations (ref. 3). Thus, the entire TPS flow field can be
treated as a slow viscous flow where local values of porosity
depend not only upon the medium but also upon the loads and tile
displacement.

The derivation presented here identifies a potentially strong
flow-metering mechanism due to a change in the tile-gap width.
The mass-flow rate through the tile gap is linearly proportional
to the pressure gradient, but proportional to the cube of the gap
width. Thus, the mass-flow rate through the gaps is extremely
sensitive to tile displacement and motion. This fact provides a
rational mechruism for explaining the experimentally observed high
oIP pressures in the vicinity of a shock wave. Shock-pressure loads
force the tile upstream toward its neighbor, thus reducing the gap
width on the low-pressure side. This narrowed gap then becomes
the most resistive element in the flow field around a given tile
and, hence, experiences the major part of the pressure drop.

Another remark should be made about the tile displacements
considered in this report. Only lateral displacements in a direc-
tion parallel to the outer flow were considered here. In general,
the tile motion has 6 degrees of freedom and is constrained in its
response to pressure and skin-friction loads by adjacent tiles and
SIP. Such motion w311, in general, create gaps whose sides are

not parallel. Givep the sensitivity of mass-flow rate to gap
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width, one can expect to have strong local metering in such cases.
Accounting for such general tile motions by calculating suitable
average gap widths will probably not reflect this strong local
metering. Preliminary conclusions drawn in comparing calculated
results from the MITAS-II computer program with those from the
JSC simulated shock test indicate, hnwever, that the nominal SIP
porosity is lower than the nominal effective tile-gap porosity for
that test. In order that the MITAS-II program accurately predict
TPS flow fields, one must include a model of the effect of SIP de-
formation on SIP porosity. This is necessary in order to identify
the crossover point where the tile gap becomes less conductive
than the SIP under load. Sufficient experimental data to develop
and verify such a model is not available at this writing.

In view of the uncertainty in some of the very basic param-
eters involved in this TPS flow-field model, the complexity of
the entire shuttle TPS and the wide range ~f aerodynamic condi-
tions to which it is exposed during a typical mission, great care
should be exercised in interpreting predictions made by this
model. In particular, if predictions of tile loads made by this
TPS flow-field analysis are to be used in assessing hardware
safety margins, then every effort should be made to elimipate un-
certainties in the basic physical parameters used in the calcula-
tions as well as further model verifications. In this regard,

specific recommendations are made in the next section.
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RECOMMENDATIONS

Results of the current study indicate a need for work in
several areas to improve the analytical prediction capability for
aerodynamic loads assessment of the shuttle TPS. Specific recom-
mendations are:

(1) Make further measurements of the SIP material porosity,
particularly under the structural loading conditions
appropriate to shuttle flows with shock waves.

(2) Conduct single-tile simulated shock tests (similar to
the JSC simulated shock test) allowing for arbitrary
gap widths which are not necessarily parallel.

(3) Extend the current analysis to the case of nonparallel
gap faces.

(4) Enhance the computational efficiency of the MITAS-II
program by making tke code operational on the CYBER 203
system with a faster solution algorithm.

These recommendations were made to the NLST and action has been
initiated on items (1)-(3).

In regard to the actual shuttle TPS hardware, it is strongly
suggested that consideration be given to finding and making a
simple modification to restrain an individual tile's relative
displacement so as to nearly maintain the nominal effective tile-

gap porosity.
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APPENDIX A
DERIVATION OF THE TILE-GAP-FLOW EQUATIONS USING VELOCITY
VECTOR POTENTIAL FUNCTIONS
Derivation of the governing tile-gap~flow equations for the
case of parallel gap faces by utilizing vector potential functionmns
gives insight into how a separation of variables should be attemjy .-
ed ani hopefully how the more general case of nonparallel] eap faces

night be approached. The appropriate steady “Vavier-Stokes equation
(from eq. (4)) is

Rip = VoV (A1)

where the flow is incompressible

-+ -

vV-V=20 (A2)
with no slip on the gap faces (z = zf)

V(x,y,24) = 0)

(A3)

z, = 0,1 ‘
and no flow across the gap

wz0 (A4)

It appears that there are three scalar quantities in the above for

which one must obtain a consistent separation of variables; that
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-

is, p and the two nonzero components of V. Introduction of a
velocity vector potential function from which all three of these
scalar quantities can be derived aids in the separation. In

order to proceed, one needs to recall a vector identity
2> > > -+ -+ -+ -+ R
VOV = P (Ve V) -V xV xV (AS5)

and the general vector properties that a vector can be decompesed

as

- -> -+

Va=Ve+7xa (A6)
and that

- >

VxVg =0, g a scalar function I

+» -+ + +> ’ (A7)

Ve«VxBz0, B avector functiocn ‘

Several general results follow directly from equations (Al), (A2),

and (AS5)-(A7):

> > 2

VeV=290 V¢ = 0 (A8)
-»> -+ > + -+
RVp = =« UV x V x V x A (A9)
2
Vp = 0 (A10)

From these equations, it is seen that the scalar potential func-

->
tion ¢ does not enter into constructing the solution for Vp
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whereas the vector potential Z does. Note, however, that
may be needed in order to satisfy no-slip velocity boundary con-
ditions, such as equations (A3) and (A4), and that permissible
¢(x,y,z) must satisfy Laplace's equation. One splits the vector

-

potential A as
-»> +> -
A= Ah + A.p (Al1l1)

where Ah and Ap satisfy, respectively, the homogeneous and

nonhomogeneous equations

3+
X
<4
x
<3+
X
>4
"
o

(A12)

<+
x
<+
x
<+

A RV
X | —J—.
p ) 4

The potential functions Kh and K are determined by satisfying

p
the equations which result from taking the curl of equation (Al2);

that is,
-+ - -> > - > >
Vx (-RVp) =0 =V x 7V xV xV x A (A13)

plus no-slip velocity conditions at all surfaces, such as equa-
tions (A3), and prescribed or imposed conditions on velocity or
p1essure, such as equations (A4) on w and (Al12) on Ep, at the
gap edges.

For the fluid velocity vector 6, the vector potential E is

>
the streamfunction. One introduces the vorticity, w,
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->

-+ > > <> -+
w=1/29V xV=1/2V xVxA (Al14)
and it follows from equation (Al3) that

2-’
V% = 0 (Al15)

The results of the two preceding paragraphs are geaeral for
slow creeping flow. To solve a specific boundary-value problem,
appropriate boundary and symmetry conditions are satisfied by
specializing the potenti.l functions ¢, Kh, and Kp. It is not
our aim here to match or fit analytical solutions to arbitrary
boundary conditions on p or $p at the gap edges. Instead,
we separate out the gap-normal coordinate dependence to obtain an
equivalent 2-D problem in order to verify the gap-flow model and,
thus, provide an engineering approximation for the NLST to use in
tile loads assessment codes.

The condition (A4) is satisfied by

A=yk=(a-1)k (A16)

where ¢y is split into § satisfying the homogeneous equa-
tion (A12) while [II, the particular solution, satisfied the non-
homogeneous equation (Al12). Thus, the first of equations (Al12)

becomes

+»> + -+ ~

VxVxVxQk=0 (Al17)
and it can be seen, for example, that any £ for which

v2q = 0
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is a solution of (A17). For the particular solution I, one

assumes a separation of variables
I (x,y,2z) = X(x)Y(y)z(z) (A18)

and determines these functions by simultaneously satisfying two
vector equations (Al13) and (A3) subject to the nonvanishing of the
second equation (A12). Substitution of equations (A6) through
(A18) into equation (Al13) gives

3 o2 ' » [.2 ' m
0 = 35 V4(XYZ') = 33 vz(xyz)+XYz]

r L
2 v2(xyz') = -g? Vg(XYZ') + xyz"] (A19)

9

«

0 = 72 [vg(nz)]

and into equations (Al2) gives

_ 9 2 _ 9 2 '
Rp, = 3y V4(XYZ) = 3y [&2(XYZ) + XYZ'] # g(z) or 0
(A20)
9 2 9 2 '
BRpy, = - 55 V (XY2) = - 53 [vz(XYZ) + XYZ'] t g(z) or 0
The parabolic profile
Z = Kz(z-1) (A21)

is seen to simultaneously sati. fy equations (Al19) and (A20) if
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V3(XY) = 0 (433)

where K is an arbitrary constant, set by normalizing the profile.

It then follows that the particular solution
I(x,y,z) = KX(x)Y(y)z(2-1) (A23)

gives

u=-KxY'z(z-1)
v = KX'Yz(z-1)

w=0
' (A24)
Rpx = 2KXY
pr = - 2KX'Y
sz =0
and
2
V2p = Q (A25)

This is the desired consistent separation of the z-dependence with
complete sets of functions X(x) and Y(y) to satisfy the im-
posed pressure or pressure gradient boundary conditions at the gap
edges. These results are consistent with those derived differently

in the text.
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APPENDIX B
COMPARISON OF SIP AND GAP POROSITIES

The coefficient o* defined by equation (24) is the gap
porosity (or conductance) per unit length normal to the flow
direction. Customarily, one defines the coefficient per unit
area, with that area beiﬁg normal to the flux directicn. How-
ever, in order to explicitly exhibit the entire dependence of
mass flux upon the variable gap width, h*, we have multiplied
the conventional coefficient per unit area by the gap width. The
analogous coefficient for the SIP is then the conventional co-
ef{icient per unit area times the SIP thickness. Comparison of
the relative porosities of gap and SIP is made using the present
gap model (eq. (24)) and the SIP data from reference 4, respec-
tively.

The only SIP porosity data which we are aware of are given
on figure 5 of reference 4. There, pressure drop data are
plotted versus the measured volume flow rates per unit normal
area. These data are nearly linear, so we may fit the data with
a relation of the form:

apt = s /-‘-’-; (B1)

\%

*
‘ .
where Ap* is the pressure drop, S is the fitted slope, v is

*
the volume flow rate, and An is the area normal to the flux.

*
For the experiment of refererce 4, An is given by
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* *
An = wStS (B2)

where W; and t; are the width and thickness of the sample,

respectively. Dividing equation (Bl) by the length of the SIP-

Sk, K
sample, LS’ and solving for v /An yields

*
. % L %
* S* L*
An S

Equation (B3) expresses the volume rate of flow per normal unit
area through the SIP in terms of the pressure gradieut. This
equation can be put into a form analogous to equations (18),
which describe the mass flux per unit length through the tile
gaps, by multiplying the equation by p*t;. Thus,

L*
v * %
S

(BS)

The corresponding tile gap porosity is given by equation (24) as

3
3 %» 3

%k % ph *

ph . (B (B6)

*

O =
K

12 12u* \n

GAP
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The numerical values used for the quantities appearing in

equations (B5) and (B8) are

2

s* = 0.07384 x 10 BBl (from ref. 4)

Lg = 9.525 cm (from ref. 4)

t: = 0.41 cm (present TPS geometry)
h; = 0.13 cm (present TPS geometry)
* -3 3

p =1.225 x 10 © gm/cm (sea-level condition)
u* = 1.7894 x 10_4 Sseo (sea-level condition)

* *
The values for o and u correspond to standard sea-level
conditions since the SIP porosity measurements documented in
reference 4 were acquired under sea-level conditions. Using the

above values in equations (B5) and (B6) yields

* -
Osip = 6.479 x 10 6 cm-sec
*\3
* -3 {h
Ogap = 1-253 x 10 o cm-sec
r

* *
Figure 3 is a plot of log10 (UGAP//OSIP) versus the gap ratio
* *
/.
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APPENDIX
INCORPORATION OF GAP INTERFACE CONDITION INTO
LAPLACE EQUATIUN SOLVER
The Laplace equation solver used in the current work was an
SLOR method written in delta form. In order to implement the
interface conditions, equations (19) and (20), unly the res.s .al
calculation had to be modified. In the notation of figure 5, the

residual of the finite~-difference analog of equation (8) is

(p)" - (py)}
x * y iL,'1+1/2 y 1:j'1/2
Sij = (pxx)i j + Ay* (C1)

The formula for (p )* must be slighrly modifieda from its
i,J

usual central difference form at the “~v¢- ' .es due to Lhe jum_.

XX

in (px)* there. In the line relaxation procedure, y* is taken
to be the implicit direction and the program solves successive
x* = constant lines from left to right (i.e., around the tile
gap) beginning at x* = 0, The solution, p*. is continuous at all
of the tile edges and, at the tile vertical leading edge, this

requires a periodic boundary condition,

P1,3 " P1,3

since we have "unwrapped' the gap.
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A relation for (pxx)* valid at a gap interface (i.e., a
vertical edge where h* is discontinuous) is derived as follows.
Expand (px)* in a Taylor series on each side of the interface

(taken to be at 1) as

4 x x \
(Py) =(p,) - 1/2bx (p,) + . ..
x 1°1/21j x isJ xx inJ
; (C2)
* ot * *
p,) = (p,) + 1/24x (p_.) + ...
*"iv1/2,3 X4.,3 XX 3

/

Subtraction of these two series expansions gives (on using eq. (19))

* * *t
(p,) -t -y (A-|
(p )* - 1+41/2,] i-1/2,] i,d (C3)
X504 Ax*

while adding equations (C2) using equations (19), and solving for

*x
(p,)  gives
i,J

. e + ()

X X7,
(p )* = iﬂlzg_il*'n 1-1Lg)j

Substituticn of this result into equation (C3), to eliminate
+

*
(px) , then yields
i,J
2H(p,)" - 2(p,)"
w.) = 141/2,3 3,1/2L;
XX'4,3 (1 + H)Ax
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Finally, use of a central difference formula for the (px)* which

remain gives the following equation for (pxx).' in terms of p‘,

*® * *
N U N BRI W IR W |

(p
X33 1/2(1 + H)ax*?

(C4)

Equation (C4) is used in equation (Cl) to give the required
relation for SIj. Note that, on grid lines where H = 1,
equation (C4) reduces to the usual central-difference formula
for (pxx)? Along grid lines, where the gap width changes

discontinuously, the appropriate value of H 1s used.
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Table I.- Summary of te 0S-52 runs

comparison wita theory.

selected for

Run No. Tile Thickness M
28:6 2.5 in 0.840
31:4 " 0.842
34:5 " 0.858
42:3 3.5 in 0.841
43:3 " 0.858
42:9 " 0.867
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Figure 6.- 08-52 test panel for net airloads experiment.
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Figure 7.- Locations of tile-gap pressure taps on OS-52 test panel.
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